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1. Summary

1.1 Systems Factorial Technology with R

A portion of the effort to date has been dedicated to the development of an open source implementation of systems
factorial technology (SFT) measures and models within the R for statistical computing framework and language. SFT is
one methodology utilized in this research for making inferences about human information processing mechanisms
utilizing response time data. The first version of the package (sft 0.1) was released in 2012; we published a tutorial paper
on utilizing SFT, its associated experimental methodology, the double factorial paradigm, and the basic functionality in
the sft package (Houpt, J.W., Blaha, L.M., Mclntire, J.P., Havig, P.R., & Townsend, J. T., 2013, Systems factorial
technology with R. Behavior Research Methods [online publication doi 10.3758/s13428-013-0377-3). Additional research
efforts have both contributed new theory to the SFT framework, but have continued to increase the functionality of the sft
toolbox to include new measures. The second major release of the sft package (version 1.0-1) was made in November
2012, accompanied by a presentation of the new functions at the 2013 Society for Computers in Psychology Meeting. A
companion tutorial paper on the new functions is currently under review.

(Houpt, J. W., Blaha, L. M., & Burns, D. M. (under review). Latest developments in systems factorial technology with R.
Behavior Research Methods.)

1.2 Models of Opinion Dynamics

Dimer automata models provide a framework for modeling information dynamics of complex systems represented as
networks. Several simulation studies were run exploring the ability of two- and three-state dimer automata systems to
capture opinion dynamics (also termed innovation diffusion) and influence maximization in different networks.
Simulation experiments examined different networks structures, the influence of zealotry on the dynamics, and strategies
for the placement of zealots in the network for maximum influence on the final opinion states. Initial experiments were
presented at the 2013 Behavior Representation in Modeling and Simulation conference, and additional experiments were
included in an article currently under review.

(Arendt, D. A. & Blaha, L. M., (under review) Opinions, influence and zealotry: A computational study on stubbornness.
Computational & Mathematical Organization Theory).

1.3 Generalized n-Channel Workload Capacity Space

Theoretical progress was made in the area of parallel models of response time by the formulation of generalized bounds
on the capacity coefficient values predicted by standard parallel processes with n>2 channels in the system. Previously,
general n-channel bounds (upper and lower) on the range of cumulative distribution functions for standard parallel models
had been defined for minimum time, single-target self-terminating maximum time stopping rules. Relatedly, capacity
coefficient ratios had been defined for the same three stopping rules. Because the capacity coefficients are formulated by
logarithmic transformations of the cumulative distribution functions, we can redefine the bounds to provide upper and
lower limits on the capacity coefficient functions directly. These capacity space bounds were derived and proven in an
article currently under review.

(Blaha, L. M. & Houpt, J. W. (under review). Generalized n-Channel Workload Capacity Space. Psychonomic Bulletin &
Review.)

1.4 The Points to Pixels Pipeline (P2P?)

In order for patterns to be found in and for meaningful information to be extracted from high dimensional or complex
network data, easy to use and manipulate visualization tools are needed for data exploration. We developed an open
source framework for performing simplex clustering and visualizing data for visual analytics purposes. Data can be fed
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into the pipeline framework as either the raw multivariate measures, a (dis)similarity matrix computed from that data, or
as a graph of network-type data. From any of those formats, the appropriate transformations of the data are made and then
a simplex is derived. The parameters governing the computations are easily manipulated by the user. And a set of easy
visualizations are created by fitting a convex hull to each clique or cluster in the data and projecting that into lower
dimensional space, augmented by color coding. By utilizing a set of free, open source (Python based) toolboxes, the P2P?
framework is easily utilized by any researchers without need for specialized software or expensive licensing.

(Arendt, D. L., Jefferson, B., & Su, S. (in preparation) The Points to Pixels Pipeline (P2P%): and open source framework
for multivariate, similarity, and network data visualization.)

2. Manuscripts from the Current Effort

Included in the following pages are drafts of manuscripts based on the efforts described above. Each of these are
embedded images from a pdf document that was typeset in LaTeX.

2
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LATEST SFT WITH R 3

Abstract,

Systems factorial technology (SFT) is a powerful and mathematically rigorous framework
for studying how cognitive systems make use of multiple sources of information. Articles
about SK'T tend to focus on the mathematics and development of the theory, making them
inaccessible to many researchers. The sft package for R was recently introduced to
facilitate the use of SFT by a wider range of researchers. The original package contained
tools implementing only the basic theoretical tools. In the last few years, there have been a
number of advances to SK'T, which we will review, and we introduce their implementation
in the sft package. In particular, we will demonstrate R functions for functional principal
components analysis of the capacity coeflicient (Burns, Houpt, Townsend, & Endres, 2013),
calculating and plotting assessment functions (Townsend & Altieri, 2012), and calculating
and plotting distributional bounds in a unified capacity space (Townsend & Eidels, 2011).
Additionally, we expanded the package to include a function for the new capacity
coefficient for single-target self-terminating (ST-ST) processing (Blaha, 2010), as well as
functions supporting the plotting of cumulative distribution function bounds on the
predictions of standard parallel processing models for minimum time, maximum time, and

ST-ST decision rules.
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LATEST SFT WITH R 4

Latest Developments in Systems Factorial Technology with R

Introduction

Systems Factorial Technology (SFT) is a framework for analyzing how multiple
sources of information are used together in cognitive processing. Although the tools are
quite powerful and broadly applicable, they can be inaccessible, or at least daunting, to
psychology researchers. Houpt, Blaha, McIntire, Havig, and Townsend {2013) introduced
an R (R Development Core Team, 2011} package to implement the basic measures and
statistical analyses. However, SF'T continues to advance and more tools continue to
become available. In this article we give an overview of the new theoretical advancements
in the SFT framework and describe their use and implementation in the sft R package. In
particular we focus on four advances from the last few years: the single-target
self-terminating (ST-ST) capacity coefficient (Blaha, 2010; Blaha & Townsend, under
review), the unified workload capacity space measures (Townsend & Eidels, 2011),
functional principal components analysis (fPCA) of the capacity coefficient (Burns et al.,

2013), and the workload assessment functions {Townsend & Altieri, 2012).

We will begin with an overview of workload capacity in SFT to give readers who may
be less familiar with the topic a foundation for the rest of the paper. This overview is brief
and meant only to give readers the basic details needed to use these new analyses. We
encourage readers wanting further details to read the SF'T with R paper (Houpt et al.,
2013) or some of the original papers on workload capacity in SF'T and on the capacity
coefficient {Townsend, 1974; Townsend & Ashby, 1983; Townsend & Nozawa, 1995;

Townsend & Wenger, 2004; Wenger & Townsend, 2000).

First, a brief note on our notation. When we refer to the R package for the
implementation of SF'T theory, we will use sft. Any R code itself, like function names or

input arguments, will be typeset as follows: function or input.argument=value.
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LATEST SFT WITH R

Workload Capacity and the Capacity Coefficient

Within SFT, workload capacity refers to a change in information processing
performance as the number of information sources change. The original definitions focused
on processing speed as measured by response times. Some of the recent generalizations
discussed in this paper and implemented in the latest version of the R package include
response accuracy as well. In this section we will focus on the response time only approach,
then discuss the generalization in the Assessment Function section.

In most cases, a system takes longer to finish the more it has to do. However, just
because a system takes longer to respond when it is required to process more sources of
information, it does not mean that any of the individual information sources are processing
at a slower speed. Likewise, when there is redundant information available, the overall
processing speed being faster does not mean that the processing of any individual sonrce is
faster. For example, in parallel processes with redundant information, faster processing
times may be due to statistical facilitation (Raab, 1962; Miller, 1982). Statistical
facilitation refers to the fact that the minimum over a set of more than one random
variable (i.e., source processing times) tends to be smaller than any of the individual
random variables. Statistical inhibition refers to the analogous phenomenon when all
processes must finish: the maximum of multiple random variables tends to be larger than
any of the individual random variables. Thus, if all we can measure is a person’s response
time with one or more sources of information present, and not the individual processing
times of each source of information when multiple sources are available, it is important to
compare the times against an appropriate baseline.

The baseline for the capacity coeflicient in redundant target tasks is the
unlimited-capacity, independent, parallel, first-terminating model (Townsend & Nozawa,
1995). We use the initialism UCIP for the first three assumptions and OR to refer to
first-terminating (in reference to a logical OR decision rule). Because it is first-terminating,

the model is finished as soon as any of the individnal target processes have completed.
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LATEST SFT WITH R 6

Equivalently, the model has not yet finished only if none of the individual target processes
have finished,

Pr{Tycp-or >t} = Pr{Ty > 1,..., T, > t}.

We can use T; to refer to the processing time for the sth target regardless of whether there
are other sources present due to the unlimited capacity assumption. Using the

independence assumption, we can split the right side into a product,
Pe{T} > t,..., T, >t} = Pr{T} >t} = - - =< Pr{T, > t}.

We can rewrite this equality more succinctly using survivor functions,

S(t) = 1 — F(t) = Pe{T > t},
SUUIP—OR(t) = S]_ (t) Mo Sﬂ'(t)

where F(t} = Pr{T < t} is the cumulative distribution function. Lower survivor functions
correspond to faster processing times. To translate this identity to cumulative hazard
functions we use H{t) = —log S{t), so we see that larger cumulative hazard functions
correspond to faster processing times.

The cumulative of the hazard function is convenient for statistical purposes and has
the nice interpretation as the amount of work completed by the cognitive processing system
in ¢ amount of time. We take the natural logarithm of both sides of the previous equation
to arrive at the baseline prediction of the UCIP-OR model in terms of cumulative hazard
funetions,

Hycrp-or(t) = Hi{t) + - - -+ Hal(t).

The capacity coeflicient is a ratio function comparing this UCIP model baseline to
observed performance. Let C = {1,...,n} denote the set of n active channels in an
experiment. Using this set notation, we denote the empirical response time cumulative

distribution function (CDF) on an OR task as Fi:({}) = P [ming(T,) < t], for all real £ = 0

and ¢ € €. The corresponding empirical cumnlative hazard function is denoted He(t). The
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LATEST SFT WITH R 7

capacity coefficient for tasks in which a first-terminating decision rule is expected is given
by the ratio of cumulative hazard functions of response times when all n targets are present
to the sum of cumulative hazard functions of response times for cases when each of the n

targets is present in isolation,

He(t) He(t)

_ . 1
Hycip-or(t)  Hy(t) + -+ H,(1) W

Cor(t) =

The baseline of UCIP-OR processing is estimated in the denominator, so if the performance
measured when all targets sources are present is better than the estimated baseline, then
Cor(t) > 1. Likewise, worse than baseline performance would be indicated by Cor(t) < 1.
The same logic can be used to derive the baseline for tasks in which the participant
can only respond when all sources of information have been processed, ie. exhaustive or
AND tasks. For the UCIP-AND model to finish, it must finish processing all sources of

information,

Pr{Tucip-anp <t} =Pr{Ty < t,..., T, <t}

Fucrp-ann(t) = Fi(t) < -« < Fu(t).
In terms of the cumulative reverse hazard function, K{t) = log (),

Kucip-ann(t) = Ki{t) + -+ K,(t).

Lower CDFs correspond to slower processing, so lower cumulative reverse hazard functions
correspond to worse performance. Because F(f) is between 0 and 1, the logarithm of F(t)
is always negative, so lower values correspond to larger magnitudes. Hence, to keep the
interpretation of C(f) > 1 corresponding to better than baseline, the AND capacity

coefficient is flipped,
Kq(t) + -+ Ku(t)

Canp(t) = Ko(D)

(2)

Note that for the observed performance in an AND task, we use the response time CDF

Fe(t) = Pmaxe(T,) < t], for all real § > 0 and ¢ € €, and we denote the cumnlative
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LATEST SFT WITH R 8

reverse hazard function K(f). The baseline is now represented in the numerator, so larger
magnitude cumulative reverse hazard functions for response times to all sources of
information {the denominator) indicates worse than baseline performance and leads to

Canp(t) < 1. Likewise, better performance than the baseline leads to Canp(f) > 1.

Experimentally, workload capacity analysis can be used on any tasks that require an
AND or OR type of decision (and now single-target self-terminating, as we will explain
below) and that utilize a manipulation that involves judgments on different numbers of
information sources. There are two specific workload manipulations needed to utilize
Equations 1 and 2. The first is a set of single information source trials that allow the
estimation of the individual channel response time distributions. This is required for the
UCIP haseline model estimates. The second necessary condition is one in which all the
sources of information are presented together, to estimate the actual cognitive processing of
n active channels. For more on the experimental manipulations for capacity analysis,

particularly in the context of the double factorial paradigm, see Houpt et al. (2013).

To make this concrete, imagine a visual or memory search task. In order to estimate
the UCIP baseline model, participants must complete a series of single-target trials (i.e.
one item in the search array) with one type of trial for each individual different source of
information. Participants must also complete trials for n items in the search array. If this
array was all targets, then participants would be completing an OR redundant-targets
task, and the experimenter would use Equation 1 for his analysis. If this array was all
distractors, and all must be searched to determine the target was not present, then
participants would be completing an AND task, and the experiment would use Equation 2

for the analysis for those response times.

Functions for calculating the traditional capacity coefficients and the associated test
statistics from (Houpt & Townsend, 2012} are available in the sft package and described in
Houpt et al. (2013). With the basics of workload capacity analysis in SF'T established, we

can now summarize the latest developments and their corresponding functions in the sft
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LATEST SFT WITH R 9
package.

Single-Target Self-Terminating Capacity

Single-target self-terminating (ST-ST) processing refers to a response rule that sits
between OR and AND processing. This is the condition where there is a single target of
interest for the response. When this target is presented among other non-target
information sources in a task, it may be the first or last item processed or somewhere in
between. However, as soon as the target is identified, the observer can make a response
{hence, the nomenclature ‘self-terminating”). For example, ST-ST processing is often the
stopping rule demanded in a visual or memory search task when a single target of interest
is embedded in a search array of distractors.

As with AND processing, the ST-ST capacity coefficient compares performance on a
task to a UCIP model using cumulative reverse hazard functions (Blaha, 2010; Blaha &
Townsend, under review). The UCIP model prediction is the cumulative reverse hazard
function for response times to the single target processed in isolation. Let Kj(f) denote the
response time cumulative reverse hazard function for single-target k processed alone.
Becanse the assumptions of the UCIP model are that the individual channel processing
rates are independent of other channels and do not change as the total number of channels

changes, then
Kucip-stsT = Ki(t).

The cumulative reverse hazard function for processing of the same single target &
among n total information sources (n — 1 distractors) is denoted Ky c(f), where again
C ={1,...,n}. The latter case is the higher workload condition of interest for workload
capacity analysis. Taking a ratio of the UCIP model to the n-source processing
performance gives the ST-5ST capacity coefficient:

Ki(t)

Csrgr(t) = Keoll) (3)

11
Distribution A: Approved for public release; distribution unlimited.
88 ABW Cleared 02/13/2014; 88ABW-2014-0516.



LATEST SFT WITH R 10

Similar to Canp(f), the numerator is the baseline model, and a larger denominator
indicates worse than baseline performance, giving Csrsr(t) < 1, which is referred to as
limited capacity processing. This indicates that either there are limited processing
resources available, there is inhibition among the subprocesses, or the items are not

processed in parallel {e.g., the items may be processed serially).

Likewise, better than baseline performance again leads to Cgrgr(f) > 1, which is
referred to as super capacity processing. This indicates that either there are more
processing resources available per process when there are more processes, that there is
facilitation among the subprocesses, or the items are not processed in parallel (e.g., the

items may be processed coactively).

Additionally, Blaha and Townsend {(under review) showed that a statistical test for
Csrsr(t) is a special case of the statistical test for AND capacity developed by Houpt and
Townsend {2012). The estimator of the cumulative reverse hazard function is calenlated

with the estimateNAK function in the sft package, as covered in Houpt et al. (2013).

In the sft R package, the ST-5T capacity coeflicient and corresponding statistical
test {Blaha & Townsend, under review) are caleulated by the capacity.stst function. It
takes as its input a list containing two arrays of response time data. The first array in the
list is assumed to be the response times from the single-target self-terminating condition
with a total of n information sources, and the second array in the list is assumed to be the
response times from the single target processed in isolation (the baseline estimate). The
second input argument is an optional list of arrays of correct indicators; if the correct
indicators are not provided (CR=NULL), the function assumes that all response times are

from correct res ponses.

Finally, the capacity.stst function includes an indicator input ratio. If
ratio=TRUE, then the ratio form of the capacity coefficient (Equation 3) is returned;
examples of ratio Cersr(t) functions, simulated for super capacity, unlimited capacity, and

limited capacity models, are shown in Figure 1. If ratio=FALSE, then the difference form
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LATEST SFT WITH R 11

of the capacity coefficient is returned. The difference form of the ST-S'T capacity coefficient
is given by

Cyrsr(t) = Kpo(t) — Ki(t). (4)

For the difference form of Cyrsr(t), the reference value for unlimited capacity processing is
0 instead of 1. Negative values indicate worse than UCIP performance, and positive values
indicate better than UCIP performance.

We can start with an simulated example data set to demonstrate the capacity.stst
function. Recall that we need two sets of response times, the single target in isolation and
the single target among other non-target processes. In this example, we simulate data from
a, limited-capacity condition, wherein the additional information sources slowed the

processing rate of our target channel,

ratel <- .35
RT.pa <- rexp(100, ratel)
RT.pp.limited <- rexp(100, .5*ratel)

tvec <- sort{unique(c(RT.pa, RT.pp.limited)))

To evaluate Crgr(f) and test the null hypothesis of UCIP-STST processing, we can

use the function with a list of response time vectors.
cap <- capacity.stst(RT=list(RT.pp.limited, RT.pa))
We use print{cap$Ctest) to see the results of the statistical test.

Houpt-Townsend UCIP test

data: RT and CR

z = -3.4161, p-value = 0.0006353

alternative hypothesis: response times are different than those

predicted by the UCIP-AND model

The z-score is significantly negative, so we would reject the null hypothesis of

UCIP-STST processing. Note that in this example, we nsed the defaunlt function calls of
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LATEST SFT WITH R 12

CR=NULL (i.e., we assume all response times are from correct trials) and ratio=TRUE
(return the ratio version of the function). Also, note that the information about the
alternative hypothesis returned with the print command refers to the UCIP-AND model,
because the statistical test is a special case of the AND test with only a single channel in
the UCIP model (c.f. Blaha and Townsend {under review)). The data from this simulated
example are plotted as the solid red line in Figure 1.

The capacity.stst function returns an approxfun object representing the ST-ST
capacity ratio function (ratio=TRUE, which is the default) or the ST-ST capacity
difference function (ratio=FALSE), as well as the ucip.test for ST-ST processing. If
ratio=FALSE, capacity.stst also returns the variance estimate for the difference variant
for the capacity coeflicient. If the reported p-value for the statistical test is less than the

user’s predetermined type | error o level, at least one of the UCIP assumptions has failed.

Unified Workload Capacity Space

Townsend and Eidels (2011) introduced unified capacity spaces, a set of inequalities
that enable both capacity coefficients and the parallel processing response time distribution
bounds to be plotted on the same coordinate system for direct visual comparison. In order
to do this, the bounds for standard parallel processing were transformed from standard
CDF values existing on the range [0,1] to inegualities of either cumulative hazard functions
or enmulative reverse hazard functions, depending on the stopping rule, for direct
comparison with the capacity coeflicient values. Note that in this case, the capacity
coefficient assumes the ratio format which exists on the range [0, +0o]. Townsend and
Eidels (2011) derived the unified capacity space inequalities for AND and OR processing of
2-channel systems. (Blaha & Houpt, Under Review) extended this theory to general
n-channel models and derived the unified space inequalities for ST-ST processing.

In the sft package, we have developed a single function, estimate.bounds, that can

estimate both the traditional CDF versions of the bounds on parallel processing for all
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stopping rules and the unified workload capacity space inequalities. First we review both

versions of the inequalities, and then we explain the estimate.bounds function.

Bounds on Standard Parallel Processing

OR. Let F(t) = P|ming(T,) < t], for all real £ > 0 and ¢ ¢ C, denote the
cumulative distribution of response times under a minimum time (logical OR) stopping
rule. The general bounds for n-channel parallel processing under an OR stopping rule are

(Colonius & Vorberg, 1994):
max | Fo\y (8)] < Fo(t) < min[Fo\(6) + Foi(t) — Fori ()] (5)

Here, we have used the set notation C'\ {i} to indicate reponse times with all sources
present except ¢ (i.e. n — 1 total processing channels). Under the assumption or conditions
that the individual channels are identically distributed (11D}, this inequality chain

gimplifies to
Fo\y(t) < Fo(t) < [25 Foyuy(8) — Foyz (1)) - (€)

When the model under scrutiny has only n = 2 channels, the inequality chain takes the
form:

min [F(8), Fo(0)] < Flupy(6) < [R(0) + Fa(0). (7)

The upper bound on this final inequality is often referred to as the ‘race-model inequality,’
which has long been used to test for evidence of coactive processing architecture {Miller,
1982).

AND. Let Go(t) = Pmaze(T,) < t], where again €' = {1,...,n} is the set of all n
channels and ¢ € C, denote the cumulative distribution of response times under a
maximum time (logical AND, exhaustive) stopping rule. The general bounds for n-channel

parallel processing under an AND stopping rule are (Colonius & Vorberg, 1994):

n}s;.a( [C:(_;\I{g\{(t) { C“U\{j‘((t) Cn‘(_}\{,;_’jlr(t)] << C:G(t) < miin [GC'\,{'S}(F')] . (8)
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Under the assumption or conditions that the individual channels are identically

distributed, this inequality chain simplifies to
[2 * Goyny(t) — GG\{l,Z}(!')] = Ge(t) = Goynt)- (9)

When the model under scrutiny has only n = 2 channels, the inequality chain takes the

form:

[G] (t) + Gg(t) - 1] E Gé\l,g_} (t) E min [G](t), Gg(t)] . (10)

ST-ST. Let Fye(t) = P[Tpc < t] denote the CDF of response times under the
ST-ST stopping rule, where the target of interest is on processing channel £ among n
active channels. The general bounds for n-channel parallel processing under an ST-ST

stopping rule are {Blaha & Townsend, under review):
[ Fu(t) < Frelt) < ) _Fu(t). (11)
e=1 e=1

Under the assumption or conditions that the individual channels are identically

distributed, this inequality chain simplifies, for any channel ¢ € C, to
Fo(t)]" < Fro(t) < nx FAt). (12)

When the model under scrutiny has only n = 2 channels, the inequality chain takes the
form:

[F1(t) * Fo(t)] < Frp2y(t) < [F1(8) + Fo(t)). (13)
Note that in this case, k = 1 or & = 2, but this may not be specifiable a priori depending
on experimental design.

Across all stopping rule conditions, violation of the upper bound indicates
performance that is faster than can be predicted by an unlimited capacity parallel model.
This may arise from positive (facilitatory) crosstalk between parallel channels, super
capacity parallel processing, or some form of co-active architecture in the measured human

response time data. Violation of the lower bound indicates performance that is slower than
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predicted by an unlimited capacity parallel model. This may arise from negative
(inhibitory) crosstalk between parallel channels, fixed or limited capacity processing, or

some form of serial architecture in the measured human response time data.

Bounds on Capacity Coefficient Space

The bounds on parallel processing defined above can be transformed from CDFs into
cumulative hazard and cumulative reverse hazard functions to form inequality chains with
the capacity coeflicients. The bounds for all stopping rules and all models are summarized
in Table 1. For the derivation of these bounds, the reader is referred to Townsend and
Eidels {2011) and Blaha and Houpt {Under Review).

The estimate.bounds function in the sft package can be flexibly nused to compute
either the CDI or unified capacity space bounds on standard parallel processing. Ior its
first input argument, RT, it takes a list of numeric arrays of response times, each measured
from the individual channels to be modeled. The RT list can contain either one array for
each of the n channels to be estimated (so length(RT)=n), or it can have length(RT)=1
and the bounds can be found under an assumption that the n channels are identically
distributed. In the former case, the number of channels, n, is estimated from the length of
the RT list, and so the user can keep the default input arguments assume . ID=FALSE and
numchannels=NULL. In the latter case, because the length of the RT list is only 1, the input
arguments assume . ID=TRUE and numchannels=n {where n = 2) must be specified by the
user.

The optional input argument CR is a list of correct indicators that should have the
same length as the input argument RT. If CR=NULL (default), then all the response times
are assumed to be from correct response trials.

Critically, the user must specify which stopping rule (OR, AND, ST-ST) should be
computed using the argument stopping.rule={("or", "and", "stst"}. Finally, the

input argnment unified.space indicates whether the bounds should be computed for
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CDF space (unified.space=FALSE) or for the unified capacity coefficient space
(unified.space=TRUE).

Here, we demonstrate the use of the estimate.bounds function with data from the
dots dataset, which is included with the sft package. First, we load the data and extract
the necessary data to estimate the bounds for Participant 53 for the OR stopping rule

condition.

data(dots)

attach(dots)

sub <- ‘837

cond <- ‘OR’

chanl <- RT[Subject==sub & Condition==cond & Correct & Channell>Q & Channel2==0]
chan2 <- RT[Subject==sub & Condition==cond & Correct & Channell==0 & Channel2>0]
redundant <- RT[Subject==sub & Condition==cond & Correct & Channell>0 & Channel2>0]

rts <- list(redundant,chanl, chan2)
Next, we calculate the bounds using the estimate.bounds function.

cdf .bounds <- estimate.bounds(rts[2:3], corrects[2:3], stopping.rule=‘or’)
capacity.bounds <- estimate.bounds(rts[2:3], corrects[2:3],

stopping.rule=‘or’, unified.space=TRUE)

We then calculate the redundant targets cdf to compare to bounds.
redundant.cdf <- ecdf(rts[[1]] [corrects[[1]]>0])

And, we calculate the capacity coefficient.

or.cap <- capacity.or(rts, corrects)

Sample plots of parallel processing bounds computed with estimate.bounds are
shown in Figure 2. This figure shows both the AND and OR bounds, plotted in both CDF
and unified capacity space, for a single participant from the dots data set. In the CDF

space plots, the empirical CDIE of the redundant target trials response time data for either
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the AND and OR conditions is shown in the thick, solid black lines. The upper and lower
bounds on those CDFs are plotted in the dashed and dotted (respectively) red lines. Note
that in these traditional views, we would try to make inferences about capacity from the
violations of the bounds.! For example, in the data shown in Figure 2 (lower half, OR
task), there is a clear violation of the lower bound, roughly between 0 and 250 ms. Using
the traditional CDF space plots, we would infer that Participant S3 is too slow to be
performing like a race model with redundant targets. Now, using the unified capacity space
plots, we can make more direct inferences about the relationships of the bounds and
capacity coefficient. In the lower right plot of Figure 2, limited capacity Cor(t) < 1 is
observed for the whole range of response times, with violations of the lower bound obvious

for the early response times.

fPCA for Capacity Coefficients

Functional principal components analysis (fPCA) is an extension of standard
principal components analysis to infinite dimensional (function) spaces {c.f. Ramsay &
Silverman, 2005). Just as in standard principal components analysis, fPCA is a method for
finding a basis set of lower dimensionality than the original space to represent the data.
However, in place of basis vectors, fPCA has basis functions. Each function in the original
dataset can then be represented by a linear combination of those bases, so that each datum
is represented by a vector of coefficients {or scores) in that linear combination.

The capacity coefficient is a function across time, so the differences among capacity
coefficients from different participants and for conditions can rarely be characterized by
simple greater than or less than relations. The nuances of variation in functions would be
lost if one were to reduce the capacity estimates to a point by taking an average across
time or the maximum /minimum of the function. By using fPCA we can maximize the

For a full discussion of the inequality chains formed by the AND and OR processing bounds, as well
ag the inferences about capacity that are possible from these inequality chains, the reader iz referred to

Townszend and Wenger (2004).
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amount of variation we capture with a point estimate or small number of values: The
factor scores can be used to examine differences among capacity coefficients, taking into
account variation across the entire function.

The R function for fPCA implements the steps outlined in Burns et al. (2013). First,
the data are shifted by subtracting the median response time within each condition for
each participant, using the same shift for both single target and multiple target trials, so
that the capacity curves will be registered. Second, each capacity coefficient is calculated
with the shifted response times. Next, the mean capacity coefficient across participants and
conditions is subtracted from each capacity coefficient, and the resulting capacity
coeflicients are represented using a b-spline basis. The fPCA procedure extracts the first
basis function from the bspline space that accounts for the largest variation across the
capacity coefficients. The next basis function is chosen as that which explains the largest
amount of remaining variation in the capacity coefficients, given the constraint that it must
be orthogonal to the first. This process continues until the indicated number of bases have
been extracted.? Once the capacity fanctions are represented in the reduced space, a
varimax rotation is applied to concentrate variability and increase interpretability.

The fPCAcapacity function can be called from the sft package using the following

syntax:

fPCAcapacity(sftData, dimensions, acc.cutoff = .75, OR = TRUE, ratio = TRUE,

plotPCs = FALSE)

The data for fPCA analysis should be in the standard SF'T data form, which is described
thoroughly in Houpt et al. (2013): there should be a column for a participant identifier
(sftData$Subject), a column for the condition (sftData$Condition), a column for the
salience manipulation value of each source of information {sftData$Channeli), a column
for response times (sftData$RT), and finally a column indicating whether the participant

was correct on each trial (sftData$Correct). The fCPAcapacity function also has a

2The maximum possible number of basis functions is the number of input functions.
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ratio flag to indicate whether to output capacity ratios (if ratio=TRUE) or differences, an
OR flag indicating the version of the capacity coefficient (Equation 1 if OR=TRUE;

Equation 2 if OR=FALSE),* and an acc.cutoff input value to establish a minimum
criterion for accuracy required for including data in the analysis. Two variables unique to
the fPCA analysis are the dimensions value, which can be set by the experimenter to
establish the number of basis functions used to represent the data, and the plotPCs
indicator which will generate plots of the principal components if plotPCs=TRUE.

The output of the function is a list of length four. The first list entry is a data frame
titled Scores, which contains the loading values {coefficients on the basis functions) for
each participant and condition. MeanCT is the averaged capacity function across all
participants and conditions, while PF is a list containing each of the principal functions, the
number of which will have been specified by the dimensions argument in the call to the
function. The last list entry is medianRT, which will keep track of the amount each capacity
curve has been shifted during the registration step, measured in milliseconds of RT.

Figure 3 illustrates the output plots generated by the fPCAcapacity function when

run on the dots data using the function call:

fPCAcapacity(dots, 2, acc.cutoff = .75, OR = TRUE, ratio = TRUE,

plotPCs = TRUE).

Note that in the dots data, there are two conditions, OR and AND, referring to two task
instructions given in the experiment; in the present analysis, we use Equation 1 in the
fPCA analysis for all the data. In the above call, we asked for two dimensions, but again
that choice is up to the experimenter. We can see that for the dots data, the first two
components can together account for 93% of the variance (summing the values noted on
the y-axis labels). The first component function mainly inflates (or deflates, depending on
the sign of the loading value) capacity values for early- to mid-range reaction times. The

gecond PC captures variation in the capacity function at early and late times; when PC2 is

#Note that the ST-ST capacity coeffient has not vet been implemented in fPCAcapacity.
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higher, both early and late values of C(t) are higher. The scores for each of the ten
participants, in the two stopping rule conditions, are shown in the right panel of Figure 3.
In this example, both of the components can easily separate differences in the two tasks
and between the various subjects. Combining the information from the Component plots
and the Score values, the OR condition data are consistently higher than the AND
condition data for all times and all participants. Within participants between conditions,
the largest differences in capacity coefficient functions occur in the middle range of
response times. fPCA also highlights differences in capacity among participants. In
particular, participant S5 shows much lower variability between the OR and AND
conditions than the other participants, and so S5’s loading scores are higher and closer
together in the right-hand plots.

Becanse the principal component functions are specifically chosen to describe the
variability between the capacity functions for participants and conditions, this tool
provides an excellent method for looking for influences of task and individual diflerences in
capacity functions. Whereas most previous analyses of capacity data have restricted
themselves to a gross comparison with the baseline model (i.e. observed value relative to
1), this analysis is more relative, highlighting differences between observed functions, and
picking up dynamic patterns across various reaction times.

For more details on fPCA for the capacity coefficient, see Burns et al. (2013). For

more general details on using fPCA in R, see Ramsay, Hooker, and Graves (2009),

Assessment Functions

The assessment functions are a generalization of the workload capacity functions that
account for incorrect responses. The original capacity coefficient established a baseline that
assumed perfect accuracy. While the standard capacity coeflicient is robust to slightly less
than perfect performance by a participant (the rule of thumb is that above roughly 90%

accuracy should be fine), when accuracy is low, either the assessment functions or a
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parametric measure such as the linear hallistic accumulator (LBA) capacity (Eidels,
Donkin, Brown, & Heathcote, 2010) should be used.

Townsend and Altieri (2012} derived four different assessment functions each for
AND and OR tasks to compare performance on two target information sources with the
performance of an unlimited-capacity, independent, parallel {UCIP) model. The UCIP
model is augmented with an error generating process for both sources of information. Each
error process is assumed to be independent of, and parallel to, the processes for the other
source of information, but there is no assumption of independence between the correct and
error processes for the same source of information.

The correct assessment functions assess performance on correct trials and the
incorrect assessment functions assess performance on the trials with incorrect responses.
The fast assessment functions use the cumulative distribution functions, similar to the
AND capacity coefficient, and the slow assessment functions use the snrvivor functions,
similar to the OR capacity coefficient.

In an OR task, the detection model assumes that the response will be correct if it is
correct on either source, i.e., if either source is detected. Hence, the first source (A) correct
processing time must the faster than first source incorrect time, Ty < Tay or the second
source (B) correct must be faster than the second source incorrect, Tpe < Tpy. For the
CDI (fast) version of the assessment function, we are interested in whether the response
was at or before t, so either Tye < t and Tac < Tar or Tpe < t and The < Tpy. Using fac
for the completion time density for the first source correct process, Fay for the distribution
of first source, incorrect processes completion times, and likewise for the second source, this

probability can be written out as,

t ot

| fac® = Farl + [ foc(®) (1~ Fo)

/ Cfac(®)[1 - Fag) / fac(t) (1 - Fail.
(1] (1]

The same pattern of logic can be used to determine the baseline of processing for each of
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other cases, slow-correct, fast-incorrect and slow-incorrect. For a full explication of the
assessment functions and the derivation of each case, see Townsend and Altieri (2012). The
assessment function with the sft package can be used for detection tasks with the

following syntax:

assessment(RT, CR, OR, correct, fast, detection=TRUE)

The RT and CR are lists of response times and correct indicators for each trial. As in the
standard capacity R functions, the first element in the list contains the measurements from
trials in which both sources of information were present and the second and third elements
are for each of the single-source conditions. The OR input is a TRUE/FALSE indicator of
whether to calculate the assessment function using an UCIP-OR baseline (OR=TRUE) or an
UCIP-AND baseline (OR=FALSE). The correct and fast parameters are TRUE/FALSE
indicators to specify which of the four types of assessment functions to use,

For example, to evaluate a participant (57) from the OR-decision dot detection task,

we first extract the necessary data,

sub <- 877

cond <- ‘0R’

#select single channel data

chanl <- dots[Subject==sub & Condition==cond & Channell>0 & Channel2==0,
c¢(’RT?, *Correct’)]

chan2 <- dots[Subject==sub & Condition==cond & Channell==0 & Channel2>0,
c(’RT?, ’Correct?)]

#select redundant target (2-channel) data

redundant <- dots[Subject==sub & Condition==cond & Channell>0 & Channel2>0,
c(’RT?, *Correct?)]

rts <- list(redundant$RT,chan1$RT, chan2$RT)

corrects <- list(redundant$Correct, chanl$Correct, chan2$Correct)
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Next, we simply apply the function:

a.or.cf <- assessment(rts, corrects, OR=TRUE, correct=TRUE, fast=TRUE,

detection=TRUE)
The output is a stepfun object, so it can be plotted using plot:
plot(a.or.cf, ylim=c(0,2))

Figure 4 shows each of the correct/incorrect and fast/slow assessment functions for
Participant 7 in the OR condition. Note that UCIP performance would show a value of 1
for all times in all plots.

In diserimination OR tasks, a participant may respond based on whichever source
finishes first. Hence, the response will be incorrect if the first to finish is incorrect even if
the second source would have been correct. This results in a slightly different baseline for
performance assessment. Now, for a correct response, either Ty or T must be faster

than both Tar and Tgy. The UCIP baseline for correct-fast, OR,, discrimination is:

i t
| Fac@® L= Farl L~ Fau) + [ foc(®)[L~ Farl (L~ Fal

[ fac® 1~ a1~ Fr] [ foc(t) 1~ Farl(1 ~ Fid

See Donkin, Little, and Houpt (2013), particularly the appendix, for details of the
discrimination assessment functions. The R syntax for discrimination tasks is the same as

the syntax for the detection task, but with the detection parameter set to FALSE.

Conclusion

Workload capacity analysis entails a powerful set of tools within SFT for examining
the effects on information processing of differing numbers of information sources (different
numbers of stimulus inputs, different numbers of active processing channels). Several

recent theoretical additions to capacity analyses have both expanded the applicability of
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capacity to a new stopping rule (ST-5T processing) and broadened the available tools for
capacity analysis, especially to allow more nuanced comparisons across participants and
experimental conditions. Despite being a powerful framework based on minimal
assumptions (and often relying on non-parametric analyses), SFT is underutilized within
the psychological research community, partly becanse researchers previously needed to
develop their own computational codes. We hope that by making the tools accessible with
open source R functions and with the present paper together with Houpt et al. (2013),
researchers can easily use the SF'T tools more frequently.

Here, we have described briefly the new theoretical advances and provided a detailed
account of the new functions for utilizing the new tools in the R statistical computing
framework. These new functions constitute the first major additions to the sft package
beyond the initial functionality described in Houpt et al. (2013). The advantage of this
paper is that it focuses on the computational implementation for using the new capacity
tools with detailed examples of the R code. Researchers seeking to try capacity analysis
now have a standardized implementation of these functions, together with the other SF'T
tools for assessing processing architecture made available in the sft package. We encourage
researchers to use this standardized R package to reduce the chance of implementation
errors that inevitably arise when each user is left to themselves to translate from a
theoretical paper to usable code. And as additional theoretical advances are made in SFT,

we will continue to update the sft package as the state of the science for SF'T modeling.
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Table 1

Summary of all Bounds on the Capacity Coefficient (from Blaha & Houpt (under review))

LOWER BOUNDS

Stopping Rule n-channels 7 [I[} channels

2 channels

OR In{min: [Ser g3 (8]} In{Son 11) (8)} In{min($, (£),52()]}
W[, 5.0} n{[[7, 5} In{ S\ ()+52()}
‘ In{ Fi.(£)} In{ Fi.(8)} In{ Fx ()}
STST S In{Fu(t)} nan{ Fo(t)} In{ Fy(#)+ Falt)}
AND In{[ [, C=(8)) W{[ 7 G} In{G1(£)+Ca(t))

In{max; ; [Goy oy (H+G o (—CGoy (8] M2 Goy 0y (D-Coy 23 (0}

UPPER BOUNDS

TG (+Ga(t)—1]

Stopping Rule n-channels n 11D channels

2 channels

In{maxs ;[ Sovr (D+Scvn (-Sovest (O]} {26803 (- So oy ()

ln{S8(t)+5a(t)-1}

OR

In{] [, Se(t)} n{] [, Se(£)} In{5:(#)+52(¢)}
P In{ Fy(t)} In{ Fy.(t)} In{ Fy(t)}
STST III{ZC_I Feit)} In{neF.(t}} In{ Fy(Ep+F408) )
AND In{[ [, Ge(t)} {7 Geit)) In{ G (5 +Calt
In{min; |G 118} In{Gey 138)} In{min[G (£),G2(2)}|}
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Figure I Plots of 3T-8T processing capacity cosfficients, in ratic=TRIE form. The data

ware simulated from ST-5T processing, including a model exhibiting limited, unlimited,

and super capacity processing rates, and the corresponding Carer sstimates are plotted in

rad, green, and blus (respectively). The baseline reference modsl, giving Camer =1 i8

plotted in the thin black line.
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Figure 2. Example bounds on standard parallel processing from one participant (33} in the
dote data included in the sft package. The top row shows the bounds for AND processing,
and the lower row illustrates the bounds for OR processing. The left hand plots give the
traditional CDF space plots, with the bounds on the CDF for the redundant signals
response times. The right hand plots show the newer unified capacity space version of the

same bounds, plotted against the empirical capacity coefficient function.
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Figure 3. Sample fPCA plots computed on the dots data included in the sft package. The

far left plots show the component functions together with the mean capacity function; the

center plots show the difference between the component and the mean capacity functions.

The right-hand plots show the loading scores for each participant (x-axis) and for each

experimental condition (here, termed OR and AND).
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Pigure 4. Sample assessment function plote computed on one participant (37) in the the

dote data included in the sft package.
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1 Introduction

Innovation diffusion addresses the adoption of new technologies throughout society
[20]. Since its introduction, the concept has been applied to a number of differ-
ent domains not originally envisioned, and innovation diffusion is often used as a
wetaphor Lo deseribe any nunber of things (technologies, opinions, attitudes, de-
cisions) that spread through a population. The innovation rate (ie., the number of
individuals who adopted the new technology) over time typically follows logistic-
like growth (i.e., growing exponentially, and then slowing as the innovation nears
full adoption). Tdeally, from a marketing standpoint, understanding inmovation dif-
fusion helps answer the guestion “how do | ensure my product takes off¥” Many
stuclies have looked at this problem in hindsight, but general purpose, accurate,

and reliable predictors are not currently available.

This paper introduces a new individual madeling and simulation approach for
innovation diffusion that is predictive for a certain class of idealized, but realistic
scunarios. The proposed model, which is certainly o gross oversimplilication of
human behavior, allows an individual to have a state taken from a small finite set of
poszible states. Individuals change their states over time by interacting with other
individnals in a pairwise fashion sccording to a deterministic rule (however the
order of iuteractions is randow). luteractious are assumed to ocour only between
adjacent individuals in the user-defined network. Despite the limitations of this

oversimplified individual model, there are several advantages worth highlighting.

First, and from a practical standpoint, the simplicity allows for a very efficient
colputer implementation. For example, a million simulations, each with ten thou-

sand individuals, wers compleled in s [ew minuies using the proposed model on
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a single workstation with an adequate GPUL Sccond, models designed to be “re-
alistic” oflen become s0 complex that 1 is difficult or impossible 1o reason aboul
which components are most directly influencing the observed behavior, or are even
important to the model. Simple models are more easily communicated between re-
zearchers in disparate areas, and can be implemented and modified with little effort
to produce now results. Furthermore, the fine details of individual complexity tend
1o “wash oul” when one cousiders the colleciive belavior of populations. Use of o
simpler model can help circumvenn these issues. Finally, a simpler model is more
amenable to future rigorous analytical treatment, especially if it can be shown that
the model elepantly captures some interesting behavior. Tlus, these advantages
make simple individual models attractive for use in large scale simulations, which

are necessary to understand and predict the collective behavior of individuals.

1.1 Nelated Weork

Threshold models were one of the earliest attempts to understand how individual
variations throughout a population affected the innovation diffusion curve [12°.
There models assimme than each individual has complete information abont all
other individuals and has some threshold for taking acticen based on this infor-
walion. However, the assumption for individuals to have complete information
may not always be appropriate, so relaxation of this assumption led to models
such as the Linear Threshold Model [24:. In this model, a individual has a state
encoding whether they have or have not adopted. OUnce adopted, the individual
caunot un-adopn, so the ditfusion is progressive. With the Linear ‘Threshold Model,

individuals adopt if the fraction of neighbors having adopled is larger thay their

36
Distribution A: Approved for public release; distribution unlimited.
88 ABW Cleared 02/13/2014; 88ABW-2014-0516.



4 AN Omutted

given threshold. The threshold can be randomly assigned, or fixed (¢.z., 1o 1,2
Models like Lhis slrive Lo represent the beliavior of an individual in a way that
allows the collective behavior of the population to be an emergent property of the
system. The power of individual models is that, when successful, they illuminate
the relationship between individual actions and collective outcomes.

There are many other individual models of social dynamics including broad ar-
cas such as opinions, enltures, languages, and crowds |3, Another adoprion model,
The Independent Cascade Model, assumes a stochastic flavor, giving cach newly
adopting individual one opportunity to influence each of it’s neighbors according
to some probability [10]. The voter model is a simple and popular model for opin-
ion dynamics [L3]. In this model, one picks a vertex at random and the state of
that vertex is then changad to take on the state of a randomly chosen neighbor,
which performs coarsening via interface noise. There have been many variants aud
explorations into this siuple mwodel. The ideas presenled in this paper are based on
the zealot variant [21,22] and the centrist /A B variant [26,4]. In the zealot variant,

some vertexes are “zealots”

and have a bias towards one opinion over the other.
The existence of a few zealots can slgnificantly affect the long term ontcorne of
the sysleu. In the centrist/AB variauts, an addilional iniermediate state s inlro-
duced, and it iz assumed that states cannot change withour first passing through
the intermediate state (i.e., in order to change from A (left) to B (right) one must
first become AB). In the AB model, the probability that 4 — AB. AE — B, etc.,
ir based on the neighborhood density of A, B, and AR.

It is known that models with intermediate states like the AR model accomplish
coarsening by reducing the surface tension along the boundary between opposing

domains. Such models are sowetimes referred Lo as “curvature driven” models,
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as opposed to interface noise models. Fuarthermore, the models discussed above
are dillereni from rumor and epidemwic models, since the opiuions compete [or
territory versus quickly spreading within vulnerable regions as epidemic models
do. The model presented in this paper is a combination of the zealot and the AB

model, and a simplification of both.

Given a model of inflnence and opinion or adeption like those disensced above,
i® it possible 1o determine a amall set of individuals that, when influenced, can
catalvze change throughout the entire network? This question is at the heart of
the research area of Influence Maximization [8]. A solution close to optimal is
very valuable in a marketing context, for example, as it could lead to an effective
allocation of advertising resources. The current basizs for influence maximization

technigques is to assume an adoption model like the Lincar Threshold Model

24
or the lndependent Cascade Model [107 and compute the smallest set of seeds Lhal

will cause adoption to spread throuzhout the entire network.

The greedy algorithm by Domingos et al., works by computing the spread of
influence throughout the network for a given set (which is initially empty), and
finding the individual (who is not in that set] that increases the spread of influence
the most [8], That individual is chosen and added to the set, and the algorithiu
repeals uutil Lthe inlluence has coversd the entire nelwork, with the solution be-
ing the set after termination of the algorithm. Kempe et al. later proved that
the greedy algorithm will reach within 63% of optimal for these models "15]. Be-
cause the greedy alporithm is effective, but computationally expensive, researchers
liave developed techniques that iraprove the efficiency of inHuence waximization

techniques[27,6,11,19 .
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1.2 Proposad Model

The model to be propesed here is a dimer auromaton model of opinion dyuamics
involving zealots and curvature-driven coarsening via an intermediate state. Dimer
automata are similar to voter models; however, instead of updating one vertex at
a time, one edge is chosen per asynchronous update step. For this reason a dimer
antoraton can be thonght of as pattern matching and substitution system. Both
endpoints of that edge may be simultausously changed, avoiding rhe asymmerry
problem with the voter model [3]. Formally, we sssume some graph & = (¥, L)
where V and E can be interpreted as the individuals and their relationships in
the model, respectively. Let x! be the state of vertex (individual) ¢ at time ¢ To

perform an updats, an edge (i, j) € F is chosen at random, and the endpoints of

the edge are updaled syminetrically such that

S U S .
Ty = Riwg, ey, w70 = Ry, wi) ()

The application of the mle to »} and r} can be thomght of abstractly as ¢ and §
interacting at time ¢ Also, ¢ s sitnply & counter of the nurber of edges updated so
far, and only one edge is updated at a time (but edges can be updated many times
over through the course of the simulation). The extremely large space of rules for
a given set of states is gives dimer automata the potential to model a wide range
of phenomena, The rule behaves ag a fintte state antomaton from the viewpoint of

each ;. For the opinion dynamics model for this paper, let the rule be defined as

7] if e =0
Rlemy=4<0 ife>0 and m=|r and T £ 0 ]
o else
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which is based off an earlier 3-stare dimer antomaton rvule for domain coarscning
[T, This logic encoded n this rule is “generalized.” weaning the rule can support
an arbitrary number of possible opinions without any modification.

It is important, to differentiate between the opinion of an individual and the
state of that individual. An individual with state ¢ has opinion |e|. Thus, the
sign of the state designates whether that individual is a zealot or not (zealots are
negative). State 0 acts as the intermediate (i.c. centrist /AB) state that positive
states must pass through to change from one opinion to another. Since dimer
automaton rules are deterministic, the proposed model is a simplification of the
centrist/ 4B model. The allowable transitions are equivalent, but it is not necessary
to know the how many neighbors have a particular state, which simplifies the
model and improves the coraputational efficiency. Finally, it is worth noting that
the meaning of “zealot” in a dimer automaton is slightly different than in the
previous literature. Voler model zealols Liave a bias towards o particular opinion,
which is implemented as an increased probability that the zealot will take on
that state. However, a zealot in the dimer automaton medel can be thought of
having maximal bias towards a particular opinion (i.e., the probability the zealot
takes on ils favored opiuion is 1), This Is 4 result of dimer automaton rules being
deterministic, as opposed to voter model rules which are probabilistic.

For clarity, consider the [ollowing exawple. Suppose thers are two political par-
ties referred to as “red” and “blue,” which are equivalent to opinion 1 and opinion
2 respectively. Suppose Alice and Bob are friends (i.e.. the edge (Alice, Bob) € E
zo the dimer automaton can randomly choose the edge connecting Alice and Bob
and update thelr states). Let 2%, and =% refer to the state of Alice and Bob, re-

speclively. I Alice and Bob are bolh red or boili blue (ie., J:L_ = 3;}3'), then no
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change oceurs when they interact since R(1,1) = 1 and R(2,2) = 2. However,
suppose Alice is red and Bob ix blue (i.e., .17:'{ =1 aud m% = 2); aller they interact,
both Alice and Bol: would become undecided and susceptible to influence (ie.,
.Eil. L zg 1 — 0 since R{L2Y = L2, 1) = 0). It would then fall to ancther friend
of Alice and/or Bob to reorient their affiliations. For example, suppose Eve is
friends with Alice, and Eve is blue. Then, when Fve interacts with the nndecided
Alice, Eve persiuades Alice (o becowe blue (e, a;ff? = 2 since K0, 2) = 2). Thus,
Alice has switched from red to hlue through the influence of both Bob and Eve.

This mechanizm iz what drives the curvature based dynamics since, on average,

Alice will adopt the opinion of the majority of her neighbors.

The zaalot i= a simple mechanism intended to account for stubborn individnals,
since o zealot never chianges their opinion. In the political debate, il is generally
accepted that a certain percentage of individuals will never change their political
affiliation; in fact people may change their filends to suit their affiliations [5 .

So, suppose thic time that Alice is a red zealot, and Bob is still just blue (1.e.,

% = 1and 2% = 2). When Alice and Bob interact, Alice remains a red zealot,
bul Bob becomss undecided (ie., :rt:“l = -1 and L?}H = 0 since R(—1,2) = -1

and Ri(2,—1) 0). The same effect happens when Alice and Lve interact. If Alice
and Bob interact again (with Bob now undecided), Bob will be recruited over to
red from undecided, however Bob never becomes a zealot {i.e., 1_54‘2 = —1 and
.ﬂrtg’g = | since R(—1,0) = —1 and R(0,—1) = 1). The ruls is designed such that

unon-zealots never becoe zealols, and zealols never become non-zealots.
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2 Experiments

2.1 Clantrcl

Wa ara irterestad in wmderstanding how opinions collactively changs ovar time,

arud how this changs depends on the initial configeation of the system (ia., mg for

each < & V). For this saction we consider a3 sitnple casa where the systern is al ost

artiraly non-zealot blue, aside for a handful of red sealots. Fach sealob is assigned

to 3 randomly chosen vartex in the graph. Does the systam reach a consensust

after a reasonable amount of time? An example? of this is shown in Fig 1. The

four snapahots show the configar ation of the systar after the application of Eqn 2

millinns of times. hitially the system consists only of blue fates (shown as white)

atid a faw red zealots (shown as black), but the mealotz are able to quickly spread

their influetice and dominate the antire syrstarm .

=
“
»

P ey L
R RS K'Y

Figz 1 The eonfipration of the system over titne (moving from 1ot o debt) shows the

eoneenss transitioning from opinion 1 (white) to opinion 2 (blask).

1 Jonsensus is messured as the ratio of the mmber of opindon 2 non-zealots to total ron-

mealots. deslots ere laft out of this ratio sinee the population is known at the sterd of the

sirnlation and does not shange.
2 The gaphusad is o 100 ¥ 100 square lattioe with won Neumann neighborhoods and periodia

boundary eonditions, sines this has 2 straightiorwerd visualization.
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For subsaquent experiments in this scetion we use & Watta-Strogatz small world
nerwork [29° with rewire probability 0.1 und size 100 - 100. Fig. 2 shows Low the
consensus changes over time. The dynamics are more complicated than classical
population-based models of innovation diffusion, which often follow a logistic curve.
The system poes through a period of slowing growth, then quickening growth, and
again slowing as consensus is nearly reached. This anrve exhibits two inflection

poinls, as opposed Lo the logistic curve which Las only one.

Diffusion of Innovaticn

1a

08

0.6

CONSSNSLS

04

0.2

-

o0

0% 20 a0 ] 80 100
time

Fig. 2 The average consensus over time has two inflection points, a more complex and realistic

kehavior than the typical logistic murve associated with innovation diffusion.

2.2 A Simple Experiment. with Zealots

What effect. if any, do zealots have on the svster, and how do we measure this? To
begin, we must first run a control experirnent with no zealots present, and observe

the outcomes ol dillerenl ratios of initial opinions. In oilier words, whal is Lhe
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final configuration

Fig. 3 Comurol

Opinion density and consensus: small world

%]

0.8

0.8

04
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0.0
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050
Inltial configuration

experiment. varying the mitial density of apinion 1 and 2 (no zealots) for a

small world network (Watts-Stwrogatz, d = 2,p = 7.1}

outconme starting with mostly red versus mostly blue? Fig. 3 shows the outcome

of 0216 experiments® with varying opinion densitics in the initial confignration.

There is ouly a small window centered arcund 0.5 (i.e., equal quantities of opinion

1 and 2) where the density of the final configuration is between 0 or 1 (ie., the

outcome is uncertain). So, 0.5 appears to be a critical point for the system with

any density slightly above or below moving quickly to 1 or 0. Based on this, we

cau lot 0.5 be

o reasonable threshold to determine whether or not the zealots have

taken over the systemn. In other words, once an opinion is held by more than than

half the population, that opinion tends to gquickly take over the rest of the nerwork.

Now we can determine what initial density of zealots iz necessary 1o shift the

consensus from the prevailing opinion to the opinion of the zealots. If zealots only

exert short range influence, then the contrel suggests the threshold for consensus

% Experiment,

2.

scribied in |

s were efficiently conducted in parallel cn the GPU using the technique de-
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would remain close to 0.5, Repeating and averaging a number of independent trials

for o

range of zealol densilies tests this hypoihesis. For each experiweni and once

the number of zealots are determined, sach zealot is assigned to random vertex

in the network. We define the “critical zealot density” Z, as the initial zealot

density that produces a consensus above ¢, and for this experiment let ¢ = 0.5,

This quantity is computed in a straightforward manner according to Algorvithm 1.

Au example of this measurement is shown in in Fig. 4, where Lhe order provided Lo

the algorithm was a random permutation of the nodes in the network. Surprisingly,

we can see that Z, {appreximately 0.074, shown by the dotted line) is nearly an

order of mapnitude lower than the density observed in the control. Zealots have a

much higher influence on the onteomes than expected.

Algorithm 1 Compute Z, for a given order.

1. Let {v;, v

2

PRI } be an ordering of the vertices in the network

“

5. b CONSENSUS(i) > ¢

3 Z, =i, |V

4: procedure CONSENSUS({}

2

[

7

8

9

X111 & lias length |V

o) = =2 > assign zealots based on order
run an experiment with Xg as the initial configuration
measure the consensus at the end of the experiment

return <o Y 8Z — |7, [) b TNEASITE CONSENsTIS

T 2

10 end procedure
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Measuring the critical zealot threshold

%] //—

|

0.8 /

COnSensus
.

04

J

0o ——

o o0z o002 008

0.08 0.10 912 0.14 018
zealot density

Fig. 4 Determining the critical zealon threshold Z. by measuring when amisensus passes 0.5,

2.3 Varying Network Structure

The previous experiinent is repested with different graphs to delermine the el-
fect of the network used on the critical zealot density. The Watts-Strogatz small
world network [29] is a common way to explore how a model or phenomena is
affacted by network structure. This model defines a rewire probability p. which
generates networks that transition between uniformity (¢.2., o square lattice) and
randomness. From Fig. 5 we can see that the graph has an inieresting sffect on the
critical zealot threshold. As the rewire probability is increased (and the network
becomes more disorganized Z, increases quickly. However, this threshold appears
to level out and dees not surpasz 0.1, even for a fullv disorganized network. From
this we can couclude that the network structure has o significant effect on Z,, so

subsequent. experiments consider a variely ol networks.
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0.005 Effect of network structure on Z,
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Fig. 5 As the network tranaitions from order to disorder, the eritical zealot density increases.

2.4 Influence Maximization

Influence mwmaximization is a useful application for wodels of opinion dynsmics
such as the one proposed in this paper. Given a model and network, influence
maximization helps us find a small set of individuals that can precipitate a change
throughout the entire network [& . For the zealot dimer antomaton model proposed
in this paper, the problem of influence maxiinizallon lranslates iuto linding Lhe
optimal set of nodes in the network that should start as zealots in the initial
configuration. Past research in influence maximization has shown that the greedy
algorithm outperforms randorn selection as well as other heuristics based on social
nerwork analysis measures such as closeness, betweenness, and degree. The purpose
of the following experiment is to deterwine whether this resull also holds for the
zealot dimer automaton model.

Based on the experiment in the previous section, we kuow that the structure

of the network can have a significant sllect on the conseusus threshold Z,, even if
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Table 1 Networks for Tnfhience Maximization Experiment

name V] |E) details refis}

wiki-Vate T1R 103680 who votes om whem for Wikipedia ad- 17,16]
minship clections

ca HepTh ORTT 25008 High Energy Physics-Theory arXiv [18]
collaboration network

ca-GGrige £242 14496 General Relativily and Quantum Cos- [15]

mology arXiv collaboration network

Power Law Cluster 10000 20840 random scale free network with m = [14]
d,p—01

Frdés-Rényi D 39AM%  random praph with p— 123 % 1073 Ell

Watts-Strogatz g 20000 randem samall world network with & = [29]
9.p=02

zealots are chosen randomly, Therefore, the following experiment considers several
types of networks (see Table 1) as well as several different heuristics for influence
maximization. Heuristics are based on centrality metrics from social network anal-
veis cenrality: degree; closeness, and betweenness [28]. Degres centrality simply
wmeasures the mumber of neighbors adjacent to a given node. Closencss centrality
is the inverse of the average distance for a given node to all other nodes. Belween-
ness centrality considers the fraction of all shortest paths that pass through a given
node. Each of these metrics are measured for all nodes in the network to determine
a ranking. These metrics determine an ordering of the nodes in the network, which
are used by Algorithin 1 to compute the critical zealot density resulting from that

particular ordering.

These heuristics are compared against a variation of the classical greedy algo-

rithm for influence waximization [8], adapled for use with the zealol dimer automa-
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Table 2 Summary of Results for Influence Maximization Experiment

name betweenness random closcness degree grecdy
Frdas Fenyi B8R 1072 113 %107 7541072 643 % 1072 a4 ¥ 1078
Wattz Strogatz G.00 % 10 4 623 x10 4 04A 10 2 402510 2 3.50 % 10 2
Fower Low Cluster 910 x 1075 114 %1077 1201077 0,00 % 10— % 9.60 % 1073
ca-Cre 181 » 1072 982 x107% 530 v107F 3.78 v 107¢ 1.37 % 102
ca-HepTh 1.04 10— 822 210-% 173 %10°° 8.00 x 10—% 1.49 x 102
wiki-Vote 970 < 107% 121 <107 85T «107% 815 x 1073 1.14 % 107F

ton model, which is outlined in Algorithm 2. This algorithm starts with an initial

confignration X and a set of allowable moves encoded in M = {(n1,m1), (w2, 72)..1,

I ' i .
where the k™ move changes the state of node v to ap in the initial configura-

tion. In the simplest case where we start with all opinion | and want to see how

many opinion 2 zealots are needed to reach the critical threshold, we would let

Xo=1(1,1,..

JDyand M= {(i,-2) : ¢ =V} Algorithm 2 also requires an objec-

tive function ¢ to minimize. In this case ¢ weasures the consensns by counting the

nodes i the nelwork not having opinlon 2, Lhus

L
= Q |4 (3
=1 §‘1 2 (3)

The resulls of the comparison [or each graph and heuristic are shown in Fig-

ure 6, and a summary of the critical zealot densities is provided in Table 2. Sur-

prisingly, no single heuristic nor the greedy algorithm is a clear winner, though,

the random heuristic usually results the woust critical density. Another interesting

feature seen in Figure 6 is that the greedy algerithm tends to dominate the other

Lienristics early iu the simulation, bul may not be the first Lo reach criticalivy.
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Algorithm 2 Greedy algorithiy for inlluence maximization for the zwealot wodel
1. X i the initial configuration of the network

=]

@ is an objective funcrion that scores the configuration of the network

30 M is the list allowable moves

4; M = current random nunber generator stale
5. while convergence criteria not met do & can lre an arbitrary threshoeld e
A L, — arpmin sCORR(X, k)

k

T G.oy = M(k)
5 Xalih=w
9. end while
10: procedure sCORE{X, k)
11: set random number generator state to A
12 (,0) = M(%)
13 X{i) =0
14: X = result of experiment with initial input of X
15: return $(X;)

16: end procedure

2.5 Competitive Zealotry and Political Polarization

Realistically, we can expect to encounter both individuals who advocate for change,
and those who resist it. Tn other words, we shonld investigate seenarios where
zealots are present for both opinions. Clearly the ontcome will depend on the
ralbio of thess two types of vealols, but il may also depend ou Lhe tolal quantity
of both types of zealots as well. Fig. 7) measures the consensus of the system for
962 different pairs of zealot densities in the range from 0 to 0.3. For each pair, the
experiment is rerun 100 times for a reasonable sarmple size. In this figure, a line
it drawn showing when the consensus crosses 33% and 66%, which separates the

diagram inlo three distinct regious.
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Fig. 6 The greedy algorithm for influence maximization is compared against rankings based

on social network analysis metrics for several different graphs.
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Fig. 7 Phase diagram for multi zealot experiment on Barabdsi-Albert network
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If the consensus was solely dependent on the ratio of competing zealots, we
would expect the transition between opinion 1 and 2 to follow a siraight line whose
slope was equal to the critical ratio. However, this rransition follows a curved line.
Furthermore, when the quantity of both zealots passes a certain threshold. the
outcome becomes meta-stable {1e., a stable combination of both opinicns), which
we refer to this as the *undecided” phase). When the density of opinion | zealots
is low (e.g., < 0.1), the system chooses only belween red and blue. However, with
high enocugh densities of red and blue zealots, the system tends to remain in an
undecided state, with significant amounts of both opinions present. This suggests
that thiz model may be applicable to phenomena like political polarization where

opposing opinions arve held by significant. fractions of the population.

To rest Lhis, we apply the inllueuce maximization algorithm for the zealol
model to a dataset consisting of politically charged communications hetween users
of social media 7]. In addition to containing a social network, each node in the
dataset iz labeled as either left or right leaning, providing ground truth about
cpinions that can be loveraged. Applying inflnence maximizartion to this datazet
require= =ome wodifications siuce we are now waxiwizing inlluence lor more than
one target opinion. First, we assume that the initial configuration consists entire
of some arbitrary third opinion, thus Xy — (3,3, .., 3). Now, assuming that Xy is
the target configuration of opinions in the network (i.e., the ground truth), the

objective function becormes

b= 1=3]e] = Xp(i))

1=

and the sel of allowable moves are M = 44, —XT(i)) Die Vi
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3 Discussion

4 Conclusions & Future Work

The dirmer automaton model presented combines and simplifies two variants mod-
els of opinion dynamics: the zealot model and the AB model. The resulting coarsen-
ing phenomena is curvature driven, and is used to investigate innovation diffusion.
Using this madel, we investigated some basic questions, namely, how many zealots
are needed to reach consensus? The critical threshold of zealots required was sig-
nificantly lower than 0.5, meaning only a few zealots in random locations in the
network can significantly influence the entire system. This threshold depends on
the network structure and the initial placement of the zealots in the network.
We also considered the case where both opinions have zealots, and some com
bination of zealots of both opinions leaves the system in an undecided state. Thus,
the presence of individuals who refuse to change (e.g., opinion 1 zealots) could be

an explanation of why some innovations fail to take hold.
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A further challenge is to then verify these results against actual data such
as marketing trials or elecrions. Real world dale is often incomplete or conlains
uncertainty, so, an additional path for future work is to incorporate this into the
model, perhaps by biasing how edges are randomly chosen by the dimer automaton
according to a given probability distribution. Additionally it may be reasonable to
upgrade the model so an individual’s state lics on some spectrum between the two
extremes instead of being 4 sharp chioice beiween two opposing opinions. Hopelully
this can be done in a manner that preserves the simplicity and elegance of the
original model. This approach may be necessary if the simple model presented in

thiz paper is not sufficiently predictive for real world data and scenarios.
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Abstract

We provide the n-channel extension of the unified workload capacity space bounds for
standard parallel processing models with minimum-time, maximum-time, and gingle-larget
self-terminating stopping rules. Thiz extension enables powerful generalizations of this
approach to multiple stopping rules and any number of channels of interest. Mapping the
bounds onto the unified capacity space enables a single plot to be uged to compare the
capacity coeflicient values to the upper and lower bounds on standard parallel processing

in order to make direcl inferences about extreme workload eapacity.
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Generalized n-Channel Worklead Capacity Space

The study of the combination of multiple scurces of information is ubiquitous in
cognilive psychology, Fxamples inclurde vieual and memeory scarch tasks, in which the
multiple sources are the array items through which a participant must search, and
complex decision making tasks in which multiple types of information must be combinedd
to make a good decision. One question that often arizes iz the extent to which adding
nmore sources of information affects the processing of each individual zource. For example,
one might inguire whether it takes longer to determine the presence of a particular object
in a stimulus when there are more total objects in the stimulus. In this paper, we refer to
a coghitive systenm’s response to variations in the number of information gources as its
workload capacity.

One of the most commonly used measures of workload capacity is the Race Model
Inequality (Miller, 1982), which gives an upper bound on the response gpeed of a parallel
processing model with context invariance (defined below) for testing one versus two
sources of information uging cumulative distribution functions (CNFs) in the context of
minimum-time, redundant target decigions. Subsequent to Miller's paper, the basic logic
of the Race Model Inequality has been extended to a develep lower hound on
minimum-time models ag well as upper and lower CDIF hounds for other stopping criteria
{e.g., all information must be processed rather than any one source) and more sources of
information (Grice et al., 1881; Colonius & Vorberg, 14%1). Using a stronger set of
agsuniptions, together with a well-defined baseline model, Towngend and colleagues
deriver an equality to test workload capacity, termed the capacity coefficient (Townsend
& Nozawa, 1995; Townszend & Wenger, 2004; Blaha & Townsend, under review).

Reeently, Townsend & Eidels (2011} introduced the notion of a unitied workload
capacity space for plotting both the capacity coefficient and the CDI' bounds on standard

parallel processing on the same plot space. This work served to transform Lhe upper and
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lower bounds on parallel processing from probability space (crdinate values bounded on
[0, 1]) into the same unit-less axis as the capacity coefficlent, with ordinate values bounded
on [0, +eo). Practically, thiz unified space allows investigators bo directly compare # the
sarne plot capacity coefficient values with the hounds on standard parallel processing,
which enables some estimation of possible extreme eapacity values (very high super
capacity, very low limited capacity), as well as some inferences about possible model
architectures (e.g. violation of the race model with super capacity implies a possible
coactive model architecture). Unfortunately, Townsend & Eidels (2011) limited their
derivations to models with only two possible operating channels. The capacity coefficients
are defined for » > 2 channels (Townsend & Wenger, 2004}, as are the CDF bounds on
standard parallel processing (Colonius & Vorberg, 1994), 5o the restriction to n = 2
channels is an unneceessary limitation of the applicahility for the new unified space.

Herein, we complete the derivation of the unified workload capacity space by
extending the transformations of the parallel model bounds to the general case of n
channels, where n > 2. We also provide the alternative versions for the unified space when
the marginal distributions of the channels are assumed to be independent and identically
distriluted (TTD), which serves to simplify the computations. Finally, in addition to the
AND and OR cages derived in previous work, we add the bounds for single-target
selFternninaling processing, recently inbroduced in Blaha (2010) and Blsha & Townsend
funder review),

We use the [ollowing notation throughout the paper. Let Bp(t) = P [ < £] be the
CDF of responge times for a system with the set of n active channels, ¢ = {1,....n}. To
denote the CDF of a single channel ¢ among the £ channels, we use F, 0(t), and to denote
the processing of a single channel « alone (i.e. no other active channels in the model or
n = 1), we uge F.(¢). We use set minus notation €% {c} to indicate the full et of channels

C excepl c.
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In this work, standard parallel processing i3 used to refer to a procesging system
that exhibits independent channel distributions (no cress-talk, no statistical
facilitation /degradation). Thig means that for any number of active channels, the CDF for
all channels active simultaneously is the product of the marginal distributions,

Fo(t) =10, Foc(t). Additionally, standard parallel processing exhibits context
independence, or context invariance. This means that the marginal distribution of any
given channel ¢ is iclentically distributed when any number of additional channels are also
operating. We denote this by F,(t) = F,(t). Functionally, this allows the individual
channels to be estimated hy single-target or single-feature conditions in an experiment,
which often greatly simplifies the number of conditions the experimenter needs to test in
order to use these models.

Additionally, we note that standard parallel processing is often referred to as the
parallel race model, the parallel horse-race model, or simply the race model (see, for
example, Miller, 1982). This analogy specifically refers to the case when the fist channel te
finish processing iz enough to make a response. This is the cage of minimum time
processing, also termed first-terminating stopping or an OR (logical OR-gate) stopping
rule. Thig would be the stopping rule engaged in tazks like visual search among redundant.
targete (no distractors) where the identification of the first target to be searched i3 enough
to complete the task. The slandard parallel model architecture is enpaged under other
stopping rules, as well, including exhaustive stopping (lagt-terminating or logical AND
stopping), and the in-between case of single-tarpel sell-terminaling (ST-8T) stopping. In
the former casge, all channels must complete processing before a responge ix made. In the
latter case, the completion of a specific single target channel is enough to terminate the
processing, but the target channel may be any of the » posgible channels - first, last, or
gomewhere in between. Each of these stopping rules changes the form of the capacity

coellicienl. and the predictions of the race model Lounds, so we will presenl the derivation
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of the bounds in unifled workload capacity space for each model in turn.

Betore we get into the derivation of the unified response time bounds, we want to
remind readers Lhal all CDFs and survivor funclions exist on the range [0, 1], so the
natural logarithm of those functions produce negative values. Thus, cumulative reverse
hazard tunctions {natural log of the CDF) exist on the range (—oo, U, as do the natural
logarithms of any bounds formed by a single CDE or products of CDPe (sums of CDIs
can range above 1, and so the natural log can exist on (—=0, +oa)). Lhese negative values
will influence the derivation of inequality chains throughout this paper. Note also that the
cumulative hagard function usged in the minimum time bounds, is found az the negative
natural log of the survivor function, and so it exists on the range [(), ), leaving fewer

negative signs to track in those praofs.

Minimum Time Bounds

Lot Fe(t) = P ming(Te) << €], for all real ¢ > 0 and ¢ = ¢, be the CDF lor an
n-channel system operating under a minimum time stopping rule, where ¢ — 41, ..., n}is
Lhe set ol all possible channels. Deline }f'(_v\_{i_;(i) =r :min(v\{l—} 1. =< 1‘] ag Lhe CDE I all
channels except ¢ are running, and define Fg, ;. ty— P :minc\\_;:‘:j)_ 7. < t}, i # 4, for the
CDF of all channels but ¢ and j. Further, define the survivor function as S:(¢) = 1 — ¢ (t).

We measure the amount of work completed in each channel ¢ with the cumulative

hazard function, defined as:

) rt Je{r)
H) = )
({) »/t = ‘S/‘.(T)

dr = —In(8.(0))

which can easily be estimated directly from the empirical response time survivor function
for any experimental condition.
The capacity coefficient for minimum time (first-terminating, OR) processing for an

rn-chanmel model 13 delined ag a ratlo ol cumulat ive hazaed Tunetions (:T(lW[lF(‘,ll(l &
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Nozawa, 1095; Towngend & Wenger, 2004):

o Helt)
Cor(t) = \—mLi(H(f)

21

(1

The numerator in Equation | iz the observed processing of n active channels, while the
denominator ig the prediction of a benchmark standard parallel processing model,
exhibiting independence and, in thiz terminology, unlimited capacity. Thus, capacity iz

qualitatively inferred relative to a ratio equal to 1, which is where observed processing i

7

equal to the benchmark niodel prediction and unlimited capacily ig concluded. [T
Cor(t) > 1, then super capacity, or better-than-benchmark, performance iz inferred. And
if Com(f) < 1, then limited capacity, worse-than-benchmark performance, is inferred !
The original race model CDF bound by Miller {1982) provided an upper bound on
the CDF from the parallel, minimum-time model with » = 2 channels given by
F{A,B}(") < Fu(i) + Fg(l), where A, B denote the two parallel channels. Grice et al.
{1884) introduced the concept of a lower bound for the same processing model, which ig
detined as By gy () > min #4(8), Fr(t)].
Colonius & Vorberg (1894} provided the n-channel generalization of both CDF

bounds on parallel minimum-time procesging in the inequality chain

max [Fon ()] < Fot) < min [Foyys (8) 4 Fou (8) — Foyes (8] - (2)

J ' na

Theorem 1. The unified workload capacity space ineguality chain for the capacity of an
n-chunreed, manirnam-tine systen s, fori # 3,
In{min, [Sey;. (8] +

{1, S.(i)r

e—1"

< Con (t) <

Proof. From Equation 1, Cop(#) « In{T12 | S.(#)} = In{S-(#)}. Rewrite the upper bound

from Equation 2 in terms of the survivor functions to get

Se(t) = H}?X [.fc\\[?.}(&) — Scun U —Sov g (0] -
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It follows that

ke
Cok(t)+ In{ ] 8.0t} > 1H{H;EJ!X [Seigay (8 + Sey iy (8 = Sen s (0]
c—1 :
In{max; ; [.sm Al + Sy (8) (64] (f)J}
In{ (fﬂ

—=- Corlit) <
Similarly, rewrite the lower bound of Equation 2 as
m{in [Sg-\{,} {t)] = Se(t)
and it follows that

Cor(t) * hl{H Sy} =< In{mm |Sen a1 ()] )

In{min; [‘ﬁ';-\ (t)}}

= Copll) =
oR(r) 2 {1y Selt)}

C

Under the assumption that the marginal distributions for cach channel arve 111, then
all Ly ;) (t) are the same for any choice of ¢ £ C and we can write this as £ 1) (¢) to
denote the CDF for o 1 active channels. Similarly, the 11D assumption means the
Foutig) () are the same for any choice of 1, 7 = C, and we write this as Foo (¢) for the
CDF with n — 2 active channels. Consequently, Equation 2 simplifies to (Colonius &
Vorberg, 1994)

Fo () < Fe(t) < [2 Foyqqy (8) — Frpa. ()] (4

Lemma 1. When the morginal distributions of the parallel model are ITD, the unified
workload capacity space inequality chain for the capacity of an n-channel, minimum-time
syslem s defined by

In{Sp - (6} {2« 8 (L) — S, ()} )
(RGN 1= (L)) < Coplt) < Ay I‘() L2 J) (5)
IN{TTiy Se(t1} lnLH 1 5e(t)} )

The proof of Lemma. 1 is similar to the proof of Theorem | and is left tc the reader.
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Maximum Time Bounds

Let Go(t) P lmazc(T:) < ], where again ¢ {l....,n} is the set of all n channels
anrd ¢ < ¢, be the cumulative distribution function of response times for an n-channel
system under a maximum time {logical AND, exhaustive) stopping rule2

In order for the capacity coefficient inferences to be consistent with those for
Equation 1. we utilize the cumulative reverse hazard function to measure the work
throughput for each channel in under the maximum-time stopping rule (for a full
discussion ol the reasoning, see Townsend & Wenger, 2004; Townsend & Fidels, 2011).

The cumulative reverse hazard function for processing channel ¢ iz given by

i \
K.(f) = /_70 g;((:))

dr =In{G(f)
which, again, can easily be estimated directly from the empirical response time CDF for
any experimental condition.
The capacity coefficient for maximum time processing iz defined as {(Townsend &
Wenger, 2004)
n o -

Canns () = 730;if;;(t) (6)
1'he numerator in the AND case is the prediction of the benchmark unlimited capacity,
independent parallel model, while the dencminator ig the obzerved processing of »
channels under the maximum-time stopping rule. Capacity inferences, again, are relative
to the value Cynp(2) = 1, which indicates unlimited capacity. Canp(f) > 1 indicates super
capacity processing, and C'anp(t) < 1 indicates limited capacity processing.

Derived by Colonius & Vorberg (10843, the general bounds Tor i exhaustively
processed channels are

n:f}x [G’L;\{,}(t) + Gy lE) — (;'C\{g,j}(f)] << Gelt) = mfin [(-"3\1‘" lfﬂ . (7)
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Theorem 2. The unefied workloud cupncily space wequalily chum for the cupacily of an
n-channel, martmum-tane system is, fori = 7,

123 ! T
h‘l’{ e—1 Gc(t)} < CAND(!() < In I‘Hr;] Gﬂ(t)} ) I’S)
In{max; ; [GC\J‘.E} () + Go () — G‘;\.ﬁ"j}(tﬂ h In{min; [G‘C\i,‘:}(t)] }

Preof. From Equation 6, Canp(i) = In{G (4 = In{ T2, G.(2)}. Utilizing Equation 1, it

follows that, for the upper bound
Canp () * In{Ge(} < Canp(4) = Infmin [(}'(\{.5} ({)J +
T

= In{] | G-(t)} = Canp(t) » In{min [Geva ()]}
=1

In{TT% , (.t
" L.Hcfl\ ()}-l 2 Canpli)-
ln{ming [Gevy (8) 4

Similarly, for the lower baund,

OAI\'D(f) * lH{G(’(t)} > (?A}]D(t:l * 1[]{111'8,)( [GC\{iL{t) + G@;jw,l’t) - GL‘\JT' j}(t)i }
i ST TR L1 )
n
- IH{H G,_(Jf)} I C'A_\”_)(t:l * lll{IHaX [GC\{i} (t) + GC\U‘ (t) — G"\\{ﬁ;‘j‘l(t)- }
e—1 I \ 7
. In{| |7, Gelt)}
In{max. ; [Gewpsy (1) + Geip (8) = Gevaa (8] )

< Cann(l).
C

Under the assumption that the marginal distributions for each channel are 11D, for
any choice of i = C, all Gy g5 (#) are the same and for any choice of ¢, 7 & €, all Gy 51(2)
are the same. We write these a3 Gryy1n (¢) and Gy g3 (O, for v — 1 and n — 2 active
processing channel systems, respectively. It follows that Equation 7 simplifies to (Colonius

& Vorberg, 1904):

2% Goyny(f) = Goyay (0] < Ge(®) Gy 1), )
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Ceneralized Capacity Space 11

Lemma 2. Wien the wmurginud distribulions of the parallel model wre [ID, the wnified
workload capacity space inequality chain for the capacity of an n-channel, mavimum-time

system 15 defined by

In{ T, (6} ) Ind T2, ra8)
st T elt) w0

{2 ¢ Gy ) (1) — Gy 1y () In{Geygqy (8

The proof of Lemma 2 is similar to the proof of Theorem 2 and is left to the reader.

Single-Target Self-Terminating Bounds

Blaha (2010) recently introduced a new capacity coefficient for ST-ST processing,
with full details explicated in Blaha & Townsend {under review). For completeness with
respeel to the resulls in Townsend & Eidels (2011), we here give the ST-8T parallel
processing CDE bounds for both #n = 2-channel models and »n = 2-channel models.

Let Fyo(t) = P [The < t| denote the CDF of response times for target channel

kel Let Kyelt) = _jf,o gist; dr = In(Fy () be the cumulative reverse hazard

function for target channel k = C.
The capacity coefficient for ST-ST processing is defined as (Blaha, 2010; Blaha &

Townsend, under review)
K¢}

) 11
Kctt) (11)

Csrsr(t) =
The benchmark parallel model iz in the numerator of Cyrar(t), and the ohserved
processing of target channel £ among » active channels ie in the denominator. The
inferences about unlimited, limited, and super capacity are the same as the OR and AND
models.
The bounds on ST-ST processing are

[ E(0) = Brett) <> Fue). (12)
e—1

e—1
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Ceneralized Capacity Space 12
For » = 2 channels, with the two channels denoted ¢ = {1, 2}, the bounds simplify to
18] = Fo(t) £ Fro(t) < Fi (1) — Fait).

Theorem 3. The unified workload capnoity space nequality cham for the capacity of an

n-channel, single-target self-terminating system is,

In{F{B} . IR} ‘
m < Corgrlt) < m (13)

The proof of Theorem 3 is nearly identical to the proof of Theorem 2, substituting
the capacity coefficient and bounds for ST-ST capacity in for thoze of maximum-time
Processing.

Under the assumption that the marginal distributions for each channel are 11D, we

uge Lhe CDF ol & single channel ¢ € ) and rewrite Equation 12 as

()" < Fro(t) < = Fu(t), (14)

— J

Lemma 8. Wihen the marginal distributions are 1T, the wnified capacily space bouwnds for

ST-5T processing are

s e In{EL(0}

In{Fy (£}
e (] Tlf) < —— 15
r In{F(8)} Sm‘(’*ln{n»ch(t)} (15)

The proof of this is trivial and left to the reader.

Conclusion

We have provided the straight-forward extension of the unified workload capacity
space boundg for standard parallel proeessing [rom the limited existing definitions [or

n 2 channels given in Townzend & Fidels (2011) to the full » > 2-channel situation for
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Ceneralized Capacity Space 13

minimum-time, maximum-time, and single-target self-terminating stopping rules. The full
set of bounds, including all special cages considered to date, are summarized in Table 1.
Thig extengion enables powerlul generalizaltions of this approach Lo multiple stopping rules
and any number of channels of interest, in order to maodel the complete processing
mechanismg for an experiment of interest. Mapping the boundg onto the unified capacity
space for any number of channels enablez a gingle plot to be used to compare the capacity
coefficient. values to the upper and lower bounds on standard parallel processing in orcer

to make more direct inferences about extreme capacity values.
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Ceneralized Capacity Space 16

Footnotes

1We note that appropriate statistical tests for inferences about Cor(t) are available

, butl their delails are beyond the seope of Chis paper.

(Houpt & Townsend, 2012)
2Nate that the change in notation here i to simply help the reader distinguizh the

CDFs for minimum- and maximum-time stopping rules.
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Ceneralized Capacity Space 17

Table 1

Swrmmary of all Bounds on the Capacity Cocfficient

LOWER BOUNDS

Stopping Rule n-channels 7 11D channels 2 channels
OR In{min: [S:\-’a‘}(t): } I | SC‘.,! 1748) Lo ouian 84 (80,8 (0)]
In{][[_, S.(t}} m{][;_, 8.} Ini S (t)S2(t))
. In{ Ky (53> In{ £, (£} Ind Feit)t
STST S Lo By} nxlnd K- (2)} InfF. (= Lyit}
AND (] |7, Gekd) ] InT]7_, G-} n{ G {£)~Gait)}
In{max: ; [Co g (81 Oy @) Conge ) | G a i E-Gor a6 G @461
UPPELR BOUNDS
Stopping Rule n-channels n 11D channels 2 channels
OR In{mase; ¢ [ ey (D =Sy 0 Serrey® ) WS008 Sevaa () (S @ +820-1)
W[5, (1)) In{[Too, 8-t In{&: (t)52(21}
{ In{ Fy, (£}~ In{ F.(#)} In{ Fpit)t
STST In{y 0 Fe(t)} Infn+F i)} Inf By i +E5(0) -
AND [0, Geit)) In' T2 G ()} In{ & {£)=Ga(t)}
‘ In{min; [G’C\_ re] (r)]} ]-U{G(?\{I )f) h In{min[G{£),G.(¢)]>
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The Points to Pixels Pipeline (P2P-): an Open Source Framework for
Multivariate, Similarity, and Network Data Visualization”

Dustin Arendt™
Air Force Research Laboratory

ABSTRACT

Principal Components Analysis, Multidimensional Scaling, and
other advanced dimensicn reduction techniques are often used w
to help visvalize complex multivariate datasets. However, these vi-
apalizations reduce observations to 4 clond of points, which may
stop short of conveying more the interesting topological relation-
ships present. Our contribution is P2P?, a modular framework for
transforming a set of points or observations into a visvalization that
comvevs information about the simplicial complexes present in the
dataset. The framework is ahstracted in a manner that open source
Python packages are be leveraged to perform the compatational
“heavy lifting.” In adddition w making this framework accessible
to a much wider audience, this allows a more sophisticated com-
pouet t replace newrly aoy portion of (e pipeline. An additiond
comribution of this work is a robust method for computing a global
distance threshold that is grounded in information theory and com-
plex network theory.

Index Terms: (.22 [serete Mathematics]: Graph Theery—
Graph Algorithms; H.1.2 [Infermation Systems]: User/Machine
Systems—Human information processing:

1 INTRODUCTION

ANY problems in data analyties revelve around discovering
useful insights from a set of observations, However, obser-
valions could tuke on wany different forins given the comexl. For
example, cbservations could consist of sets of points embedded in
high dinensiona spuce. Or, observations could be measured as
matrix of similarities between other observations. Furthennore, ob-
servations could be represented as a network of relationships be-
tween other observations.  Additionally, each observation might
also be labeled with some kind of descriptive attribute ot class (e.g.,
man/woman, yonng/old, sick/healthy, etc)).
Given a set of observations, nsetul insights we may wish to gain
can he answers to questions like:
o Which ohservations are “novmal” and which are “onthiers?”
» Do observations group together, and how are those groups
related? und
« What is the relationship between classes and observarions?

There are many sophisticated techniques from machine learning,
slatistics, cotnplex network aualysis, and other felds dal can be
applied to help answer the ahove questions. However it i3 nsnally
the case that specific criteria about the data and the answer being
sought must be met hefore any technique can he effectively lever-
aged. Dor this reason, visual analytics can be emploved to obtain
an overview or basic intuition about i dataset before more sophisti-
cated techniques are applied.
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Many of the popular toals for dimmension reduction and embed-
ding assume the problem is sclved once the set of observations
have heent suitably napped into the desired 1ower dimension. Fur-
thermore, many algorithms (e.g,. lsomap, Locally Linear Embed-
ding. Spectral Embedding) rely on deterinining the newrest neigh-
bors for observations, which induces a graph from the set of obser-
valions. However, this graph, (hough it muy contuin vseful infor-
mation about the underlying topology of the dataset, is not often
represented in the viswalization. One contribution of P2P? is that it
goes beyend simply determining a goed placemennt for each vertex;
P2P” also determines how to appropriately fill in the space in be-
twaeen points hased on the topology of the underlving ohservitions.

Towards this end, this paper presents a general methodology for
data visualization that can be applied broadly to many of the dif-
ferent types of observations described above. Recently there has &
been siguificant improvements in the wvailability, quality, and ease
of use of open source tocls for scientific computing and data anal-
ysis, especially tor the Python scripting language. [n this paper we
alao highlight how several open source packages can he combined
to perform neatly all of the “heavy litting” required to implement
this pipeline. Aside from making the propesed visualization tech-
nique accessible to a wider andience, reliance on open source soft-
ware in this mammer abstracts the visvalization pipeline in a way
that is casily extensible. It is straightforward to plug in a different
algonithin al the user's discretion for any of the muin steps in the
pipeline.

2 BACKGROUND & RELATED WORK

The problem of how to best display a set of (possibly high dimen-
sionul) observations in a low dimensioud space is so fundwnental
to understanding scientific datasets that the basic techniques have
been used for decades. For (s (ype of problem we have a dataset
X consisting of n p-dimensional observations, where x; « 7. One
such technique is Principal Comyponents Analysis (PCA), where a
set of high dimensional points are rotated in a mamer that gives
the leading components the most amount of variance [9]. PCA
can be used as a data visnalization and exploration tool; when the
number of principal components is 2 or 3, the points can be ren-
dered on the screen (0 reveal relutivoships within e data, PCA
can also be used simply as a dimension reduction technique for
preprovessing before the duta is tackled by other wlgoriths, Mul-
ticdimensional scaling (MDS) addresses a problem similar 10 PCA,
but assumes that only the distances between points are known [3].
n other words, the datasets I consista of # obaervations of n di-
memsions where d;; is the observed distance between observation
iand j. Such data conld arise from preference questionnaires. for
example. Essentially, MDS algorithms atternpt to minimize the dis-
crepancy between the distances separating the emnbedded poinls and
the distances given in the inpot.

Many other lechuiques exist that improve o PCA or MDS in
some way, with one of the most popular techniques being Isomap
|17]. This algorithm constructs a graph connecting the closest ob-
servations to each other, and then the geodesic distances between
these neighboring ohservations is used to determine a suitable lower
dimensiony embedding, Other embedding techuiques iuclude Lo-
cally Linear Tmbedding [14], Laplacian Cigenmaps [2]. and Spec-
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tral Embedding [11]. All of the technigues dis
available in the Seikir-leam python package for machine leaming
[13].

Suppose that in addition to having a set of observations X, that
we also have a corresponding label for each observation ¥, where
¥ & 2. Visual analytics can help us discover if there is any meaning-
ful relationship between X and ¥'. When we wish to learn a function
[+ X =¥ that accurately predicts y; from x;, this is referred to as
supervised learning, (specifically classification when Y is discrete)
[15]. Since this is such a common task, some researchers have de
veloped algorithms that take into account both X and ¥ when deter-
mining the embedding, with one well known example being -SNE

[18].

3 METHODS & RESULTS
Given one of the following:

¢ X, aset of multivariate observations, where ¥; © 27,

o D amairix of dissimilaritics between observations, or

¢ (= (V,E)agraph reps ing the relatonships between ob-

servations,

one of our goals is to determine an effective two-dimensional em-
bedding of the observations, P, where p; is the (x,y) coordinate of
observation i in the visualization. Our approach, P2P=, builds on
the realization that several related modern algorithms compute the
nearest neighbors of observations. Thus, there appears to be a very
natural progression of X — D — G — P that will yield an effec-
tive visualization. Furthermore, at this level of abstraction, one can
see that the same algorithm can be used regardless whether we start
with X, D, or G-when we do not start with X, we are simply short-
cutting the pipeline. Funthermore, each mapping in the pipeline is
easily implemented with an open source Python package function
call, making the mappings interchangeable with other algorithms
according to one's preference.

However, we do not stop once P is computed, noting that G
may have additional structure that can be conveved effectively in
a visualization. Specifically, ¢ may contain a number of cliques
(i.e.. complete subgraphs), and we believe that rendering cliques as
filled-in polygons instead of as the traditional node-link style im-
proves the usability of the visualization. One reason for this belief
is that a significant number of edges can be replaced with a single
uniform polygon: a clique of size k would have be drawn as k(k— 1)
edges, but would be replaced with a polygon having at most k— 1
edges. The color of the polygon can encode the size of the clique
s0 that density information can be gleaned from the visualization al
a glance,

Given the set of maximal cliques C and an embedding of the
observations P, it is necessary to compute the convex hull of each
clique in order to render cach clique as a polygon. This is because
P actually defines a projection of the simplex corresponding to that
cligue into a lower dimensional space. As aresult of this projection,
some of the vertices in the simplex may end up as inerior points.
Computing the convex hull of the elique given P will identify which
vertices are on the true boundary of the projected polygon.

The entirety P2P? procedure is described in Algorithm 1, and a
description of open source function calls made by P2P? is shown
in Table 1. The results of applying P2P? to are shown in Fig-
ures 1, 2, and 3. Figure 1 illustrates how computing the convex
hulls of ¢liques might improve the usability of the visualization by
reducing the number of edges drawn, and filling in some of the neg-
ative space.

Figure 2 shows how choosing the distance threshold € affects the
visualization. When £ 1s trivially small, no observations are consid-
ered neighbors, which results in a completely disconnected graph.
As ¢ incrcases more of the underlying structure becomes evident,
until eventually & is large enough that all observations are consid-
ered neighbors and belong to a single clique. Clearly a value for €
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that 1s “just right”™ must lie somewhere between these two extremes,
which have little utility. We provide a way to compute a solution to
this “Goldilocks™ problem, which is detailed in Section 4.2,

Figure 3 shows P2P2 applied to a larger multivariate dataset rep-
resenting over 1000 hand drawn digits.

Algorithm 1 Basic outline of the P2P? abstraction

1: start with X, a »n = m matrix of points

: find (or start with) [, a n > n matrix of distances between points
: find £, a global distance threshold

: find (or start with) G, a graph induced from D and £

: find P, an embedding of G, D, or X in B2

6 find C, the set of maximal chiques n G

: find H, the convex hulls of each clique in C given P

8 draw each hull in i as a 2-D polygon

Lhods kD

=1

Figure 1: Comparison of a typical node-link rendering of a network
{left} versus the P2P? embellishment (right). The graph data is fram
the Zachary's karate club network [19] which can be accessed with
nelworkx karale club graph.

4 DISCUSSION

4.1 Considerations for Large Datasets

The X — D mapping will create scalability 1ssues when X | is large;
when the number of observations is becomes much greater than
10* the average machine will not have sufficient memory to store
D, which grows as O(|X ?). To address this issue, one can instead
map X directly to G by leveraging sophisticated data structures like
the KDTree. For example, Scipy’s KD Tree allows for the efficient
computation of k-€ neighbors (the k nearest neighbors with a dis-
tance less than £) given a set of points, X. However, the KDTree
can becomes inefficient when the number of dimensions are high
(e.g., > 15 for this case). So when the dataset is both large and
high dimensional, a reasonable solution to this problem is to use a
fast dimension reduction technique like PCA to reduce the number
of dimensions in X down to a tractable number, hopefully without
much loss in accuracy.

4.2 Choosing ¢

P2P? maps an X or D to a graph through the application of an ar-
bitrary distance threshold. Clearly this threshold can have a signifi-
cant detrimental effect to the usability of the visualization if chosen
poorly, as demonstrated with Figure 2. So we outline here a method
for determining a good choice for £ with a solid basis from ifor-
mation theory and complex network theory. First, we assume that
we have a set of class labels ¥ corresponding to each observation
in X or D. The intuition for choosing a good value of £ is that the
edges in the graph induced by & should have edges that are likely to
connect observations with the same label. This is often referred to
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Table 1: P2P? Open Source Function Calls

step  function call description ref

1.5 sklearn.decomposition PCA dimension reduction (use for large, high dimensional datasets) or asa 9, 13]
vertex embedder

2 scipy.spatial.distance. pdist compuie the distance between all pairs of poinis (many distance norms [10]
available to choose from)

3 scipy.optimization.minimize_scalar scalar minimization of objective (use  bounded=True with [4, 10]
bounds={(0, &ax)-see Eqn. 7)

4 scipy.spatial. KD Tree cfficient computation of k-€ neighbors (use for large datasets, but only [10]
implemented for I‘P NOrms)

4 networkx. Graph create a graph data structure a list of edges { from nearest neighbors) or M
an adjacency matrix (from thresholded distance matrix)

5 networkx.draw_graphviz compute 2-d spatial embedding for graph vertices (use “stdp” option for 6]
very large graphs)

5 sklearn.manifold MDS embed vertices into [2? directly from D [3,13]

6 networkx. ind_cligues find maximally connected components (e.g., complete subgraphs) [5.7]

7 seipy.spatial.ConvexHull “rubber band” fit to a set of points in order to omit interior points from  [1, 10]
the projection of the simplex

8 matplotlib.collections PolyCollection  render polygons [8]

s F——
w N 3
O T

Figure 2: P2P? visualization of the Iris classification dataset with
£ varying linearly frem the minimum to maximum euclidean dis-
tance between observations. The data can be accessed with
sklearn datasels load iris.

as “assortative mixing,” or the tendency for adjacent nodes in a net-
work to have the same properties [12], and a number of techniques
exist o measure it

Classically, assortative mixing 1s measured with statistical corre-
lational technigues, which has several known issues. Recently in-
formation theory, specifically mutual information has proven to bea
useful tool for understanding complex networks, including the phe-
nomenon of assortative mixing [16]. Thus, our measuore for assorta-
tive mixing is based on the mutual information 7(E; A), where E and
A are Boolean random variables corresponding to two nodes having
equal state, and two nodes being adjacent, respectively. I(E;A) is
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Figure 3: P2P? visuzlization of the Digits classification dataset. The
digits dataset can be accessed with sklearn datasets load digits.

found as follows:

I(E:A) — H(E) — H(E|A), m

and

H(E|A) = P(A = 1) H(E|A = 1)+ P(A = 0) -H(E|A = 0), (2)

where H is the entropy of an arbitrary probability distribution X.
The following probabilities are directly measured given G = (V,E)
and X, the network and the state of the nodes on the network, re-

Distribution A: Approved for public release; distribution unlimited.
88 ABW Cleared 02/13/2014; 88ABW-2014-0516.



spectively.

1

FlE=1 = ry Y al (2

=

2m
Pa=1) = o= ) @
PE=14=1) = ): 8y~ (5)

wV)eE

where = [V, m = |E|, c; = X; 8(y; — i) (which siroply courts the

mirnber of nodes in the graph with class £}, £2 is the set of unique
claszes in ¥, and § iz the Dirac delta function. The remaining quan-
tity that is not imrnediately found due tothe law of total probability
is

1|A=1]]

) AEE=1) - (E=

PE=1j4=0 = (6)
2

Note that computing [(F.4) scales effectively with the size of the
dataset since, the most expensive computation loops over the edge
set, requiring only O(m) time to corrplete.

The ideal distance threshold is

&, = argmax .# (¥ (X, e). 1),
£

where & (X, e) induces a graph fromthe set of observations X and a
given g, and & (G, ¥) compntes the assortative mixing of the graph
G with cortesponding labels ¥, The optimization program can be
bounded to (0, Spex) where

7

Emax = A & (X3,%;).
if

I X is lange (e.g. |X| > 10%) then a smaller randorm subset of X
should be a sufficient replacernent for X to cormpute Emax.

One subtle isane is that because ratual inforrmation rost be pos-
itive, then both H(A) and H(E) are upper bounds of J(F;4). As we
vary &, we can expect H(E) to remain constant; however as we in-
crease &, the density of the graph also increases, causing H(A) to
inereage until the density of the graph reaches 1/2. Therefore, a
faiter way to cormpare the mixing of two graphs that have different
densities would be to normalize the rmitual information by H(4).
Figure 4 shows the beneficial effect this normalization has on the
mixingscores for the digits dataset. When J(E;A) is normalized by
H{A), the optimal value of & decreases.

5 CoNcLusIoNS & FUTURE WoRK

Conclusion

For fature work we intend to implernent P2P? in an immersive
3-D vimnal environment, From an algotithmic standpoint, making
this jurnp is neatly trivial due to the modular natre of P2P2, One
rmst simply exchange the current graph drawing algorithm with
one that ermbeds vertices into 3-D (or, alternatively use MDS or
PCAtoproject X or D into 3 instead of 2 dimensions). Furthermore,
the convex hull algorithm also generalizes to 3 dimensions, where
polygons are simply sets of triangles instead of line segments. The
rain effort in the iroplernentation in the virtual environment will be
in an effective interface for exploratory visnal analytics, as well as
effective volurme rendering of the 3-d convex hulls,
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Choosing « by Mixing Maximization

IEA)

HEA)/H(A)

assortative mixing

o 10 20 30 40 50 60 70 80
distance threshold

Figure 4: Mutual information scores of the graph induced by 2 forthe
digits dataset. Normalizing I{E;4) by H{A) decreases the optimal
value of 2
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